Exercise 13

If a ball is thrown into the air with a velocity of $40 \mathrm{ft} / \mathrm{s}$, its height (in feet) after t seconds is given by $y=40 t-16 t^{2}$. Find the velocity when $t=2$.

Solution

Determine the velocity first.

$$
\begin{aligned}
v(t) & =y^{\prime}(t) \\
& =\lim _{h \rightarrow 0} \frac{y(t+h)-y(t)}{h} \\
& =\lim _{h \rightarrow 0} \frac{\left[40(t+h)-16(t+h)^{2}\right]-\left[40 t-16 t^{2}\right]}{h} \\
& =\lim _{h \rightarrow 0} \frac{\left[40 t+40 h-16\left(t^{2}+2 t h+h^{2}\right)\right]-40 t+16 t^{2}}{h} \\
& =\lim _{h \rightarrow 0} \frac{\left(40 t+40 h-16 t^{2}-32 t h-16 h^{2}\right)-40 t+16 t^{2}}{h} \\
& =\lim _{h \rightarrow 0} \frac{40 h-32 t h-16 h^{2}}{h} \\
& =\lim _{h \rightarrow 0}(40-32 t-16 h) \\
& =40-32 t
\end{aligned}
$$

Therefore, the velocity at $t=2$ is

$$
v(2)=40-32(2)=-24 \frac{\mathrm{ft}}{\mathrm{~s}} .
$$

